Development of PVEFS V2 Parallel File System

W. B. Ligon

June 2, 2003

Abstract

Parallel 1I/0 remains o critical problem for cluster
computing. A significant number of important ap-
plications need high performance parallel I/O and
most cluster systems provide enough hardware to de-
liver the required performance. System software for
achieving the desired goals remains in the research
and development stage. A number of parallel file sys-
tems have achieved remarkable goals in one or more
of several key areas related to parallel I/0, but there
is still great reluctance to commit to any file system
currently available. This is mostly due to the fact
that these file systems do not address enough issues at
once in a package that is robust enough for widespread
use. In this paper we will present the design of the
PVFS V2 file system. PVFES V2 is the second gen-
eration of a parallel file system for Beowulf clusters
developed at Clemson University and Argonne Na-
tional Labs with support from Goddard Space Flight
Center.

Introduction

The Parallel Virtual File System (PVFS) is a par-
allel file system designed for Beowulf class parallel
computers [1][2]. PVFS provides distribution of file
data across nodes in a cluster architecture and high
performance access to data by tasks in parallel appli-
cations. PVFS is open source software designed for
high-throughput access to large data sets by parallel
applications running on Beowulf computers and the
Linux operating system.

PVFS consists of two server daemons: a data server
or I/0O daemon (IOD) and a metadata server or man-

ager daemon. Under PVFS, there is one manager
daemon an on or more IODs. Clients access PVFS via
the pvislib, a library of Posix-like I/O function such
as pvfs_open(), pvfs_read(), and pviswrite().
Clients can also access PVFS via the kernel’s VFS
layer and the pvfs-kernel kernel module and pvfsd a
client-side daemon which uses the pvfslib to access
PVFS for the kernel.

PVFS uses tcp/ip to transport data between clients
and servers. Data in PVFS is striped across I0Ds
running on distinct nodes. Each file can select its own
striping parameters including the number of nodes
the file should be distributed to and the size of the
striping unit. Metadata for all files is stored on one
node where the manager daemon is running. I/0
requests in PVFS consist of strided access patterns,
where multiple blocks of contiguous bytes that are
regularly spaced in the file can be accessed with a
single read or write request.

PVES was designed to be an experimental file sys-
tem, used to research critical characteristics if appli-
cations with large I/O requirements and to prototype
different file system features that might address those
characteristics. Regardless, PVFS has become very
popular as a parallel file system not so much as a
defacto standard, but as a viable default. This is
to say that even though PVFS has many faults and
there have been many potential alternatives, PVFS
remains places the solution for parallel file I/O on
Beowulf clusters. It is important to note that PVFS
is designed to provide high performance I/0O for large
parallel applications, and not necessarily security,
high availability, or even high performance for small,
random file access. PVFS itself does not utilize any
kind of redundancy in storing files, though the under-



lying file system on the nodes can provide this. The
PVFS manager daemon becomes a bottleneck when
a large number of small files are accessed, or in the
face of a large number of metadata operations.

Still, all things considered, PVFS has done well to
live up to its purpose and has pointed the way to new
innovations in parallel file system design. In order
to begin realizing those innovations, it has become
apparent that a new file system is needed, thus be-
ginning in 2000, the PVFS development team began
work on a then next version of PVFS: PVFSv2.

PVFSv2 Goals and Features

PVFSv2 is an effort to address many of the deficien-
cies in parallel file systems of today, including the
dependence on particular network and storage hard-
ware or interfaces, scalability limitations imposed on
traditional consistency management approaches (e.g.
locks), and the lack of application-specific metadata
storage options at the file system layer. But first, the
core infrastructure of the file system has undergone a
complete overhaul intended to provide ready access to
those internal components implicated in these issues
and to make the software more manageable in a pro-
duction environment. PVFSv2 represents a complete
re-write of the original PVFS. While The original im-
plementation provided simple striping, simple strided
access requests, and tcp / ip as a transport mechanism,
PVFSv2 is considerably more flexible. New design
features include:

e Modular networking and storage subsystems,

o A powerful request format for non-contiguous re-
quests based on MPI Datatypes,

e Flexible and extensible data distribution mod-
ules,

e Support for data redundancy, and

e Redesigned client and server codes.

PVFSv2 is the culmination of a 3 year effort to
redesign PVFS as a production capable parallel file
system based on experience gained in the design and

operation of the original PVFS. The goals of the
PVFSv2 project are:

e Provide a production ready parallel file system
infrastructure,

e Use sound design practices, extensive documen-
tation, and liberal code reviews in the develop-
ment process,

e Portability, reliability, and performance,

e Expandable and customizable for research pur-
poses.

In this paper we present an overview of the design
of PVFSv2. As of this writing pre-release versions of
the file system are running and various libraries and
components are nearing completion. Major compo-
nents are briefly highlighted.

Client

System Interface Request Processor N

dcache Job Layer
Job Layer Trove
/
Network Disk
/

Figure 1: Software Architecture of PVFSv2.

PVFSv2 System Architecture

The PVFSv2 server is a combined metadata/data
server. It is carefully constructed of several abstrac-
tion layers that facilitate the transfer of data in and
out of storage and to and from the network interface.
The PVFSv2 client is constructed from the same code
up to the point that specific transfer requests are pre-
pared. The purpose of the client is to translate kernel
VFS-like calls into requests to a collection of servers
that manage the file system. The shared code be-
tween the client and server goes a long way toward



making the PVFSv2 code more manageable and com-
pact.

A critical area of design in PVFSv2 is in abstrac-
tion layers for networking and storage. Three compo-
nents of PVFS are BMI, Trove, and Flows. BMI and
Trove abstract networks and storage, respectively,
while Flows combine the two to abstract transfers
between network and storage.

The Buffered Messaging Interface (BMI) provides a
non-blocking network interface that can be used with
a variety of high performance network fabrics and is
tailored for use in file system servers and clients. Cur-
rently there are BMI modules for both TCP/IP and
GM networks. Trove provides a non-blocking stor-
age interface that can be used with a number of un-
derlying storage mechanisms. Trove storage objects
are called data spaces an each data space can hold
both byte-stream data and key/value pairs. Byte-
streams typically hold file data and my be imple-
mented with host files or raw disk partitions or simi-
lar mechanisms. Key/value pairs are typically used to
implement metadata and can be implemented using
different types of database management tools. The
current implementation uses Unix files and Berkeley
db4. Thus, one of Trove’s benefits is that metadata
can be easily expanded, accessed, and searched.

A key feature of BMI and Trove are that they pro-
vide portability. In contrast, the original PVFS was
limited to using tcp/ip and Unix file system for net-
working and storage. In the time since its develop-
ment, a number of good alternatives have appeared,
particularly in networking. PVFSv2 is more flexible
in this regard. Use of BMI and Trove also repre-
sent information hiding, improve code quality, and
increase reuse.

Flows combine the functionality of the network
and storage subsystems by providing a mechanism to
specify a flow of data between network objects and
storage objects. Flows are an optimization structure
that allows complex data transfers with a low level
of control, without the overhead of those parts of the
server that deal with requests and scheduling. Flows
also incorporate the request and distribution process-
ing system that allows PVFSv2 to handle highly com-
plex access patterns.

The flow system provides a mechanism for speci-

fying methods for transferring data between specific
storage and network endpoints. Using this, a generic
set of methods can be used to process BMI to Trove
flows, but specialized, optimized methods can also
be used for special purposes, like small I/O requests,
thus providing better performance than the original
PVFS and providing a means for research and ex-
pandability.

Server
/ Request Processor x
4
/ Job Layer ‘ A
)
| '
BMI Flows Trove 1
[
I 1
I Dist 1
v
Network Disk
N / _/

Figure 2: Flows provide a shorter path between stor-
age and network.

One of the more important lessons learned from
the design of the original PVFS was that the ordering
and scheduling of transfers to and from the network
and to and from storage can play a key role in file
system performance. With the network and storage
abstractions in place, and Flows as a means of trans-
fer, the job layer provides this scheduling and task
management.

The Job Layer provides a common interface to
BMI, Trove, and Flow tasks. The Job Layer man-
ages all of the tasks or jobs that are presently ac-



tive and also manages asynchrony through the use
of threads. Finally, the Job Layer performs depen-
dency analysis and scheduling by deciding when each
job is serviced. The Job Layer simplifies the use of
the lower level facilities and controls task ordering for
both performance an correctness.

The client and server code for PVFSv2 is the same
from the Job layer down (except that the client
doesn’t need Trove for its function). This gives
a reusable common interface to both codes, which
greatly simplifies the structuring and maintenance of
the high layers.

The System Interface is the interface between all
higher level interfaces and PVFSv2. The system in-
terface is designed to have other interfaces built on
top of it. Each API call has a wealth of arguments
that allow all of the features of PVFSv2 to be ac-
cessed where as most user interfaces would not expose
so many complex details. The System interface is de-
signed to be similar to the VFS interface of Linux and
other similar operating systems so that PVFSv2 can
readily be integrated as an OS supported file system.
The other interfaces planned include an MPI-IO [3]
interface based on ROMIO [4] for use with MPI and
a Posix-like interface.

The PVFSv2 Server is controlled by a request pro-
cessor that responds to client requests and directs
the storage and network subsystems to perform the
necessary transfers. The request processor is built
from a system state machine written and compiled
using a simple language developed specifically for
PVFSv2. This system provides a highly structured
means of handling requests, a simple means to reuse
code within the request processor, and a powerful
mechanism for adding new requests to the server for
extensions or experimental purposes.

The server state machine greatly simplifies the pro-
gramming of often repetitive tasks in the server and
simplifies the management of concurrent requests.
This is also a design feature the provides for expand-
ability, as the request processing system can easily
accommodate new specialized requests. This system
is also being studied for use in the kernel daemon
that allows users to access PVFSv2 through the ker-
nel VFS.

PVFSv2 allows complex non-contiguous I/O re-

quests via a format based directly on MPI Datatypes.
A set of datatype constructor functions identical in
function to the equivalent MPI calls is provided, and
the format can readily be translated from existing
MPI datatype formats. This format allows a com-
pact representation of arbitrarily complex cyclic non-
contiguous requests as well as representation of non-
cyclic and hybrid patterns. The commonality with
MPI Datatypes ensures compatibility with existing
MPI-IO interfaces. PVFSv2 servers directly process
this format to service I/O requests.

Simple Striping

E

ad //
m/

Nested Striping
.

[

I

Figure 3: Example of two distributions.

The main feature of a parallel file system is that it
distributes file data across multiple nodes in a par-
allel system. Most parallel file systems use a distri-
bution known as striping, whereby equal size chunks
of data are stored on the disks in a round-robin fash-
ion. In PVFSv2 the distribution mechanism has been
abstracted so that different files can be stored with
different distributions.

Virtually any distribution that can be described
with the set of methods specified by PVFSv2 can
be used. For example, mechanisms that change the
order that chunks are assigned to servers can be used
to help match data storage to the access patterns of



specific applications. One such distribution pattern
is nested striping.

Conclusion

The PVFS project is an on-going project. In the com-
ing months we expect PVFSv2 to take over as the
flagship code of the project. This will represent the
next generation of infrastructure for the file system,
upon which we anticipate active research in cross
node redundancy, interfaces, semantics, synchroniza-
tion, and other important issues. PVFSv2 has been
designed to not only fuel this research, but to act
as a production ready platform for parallel I/O on
Beowulf architectures.

References

References

[1] Philip H. Carns, Walter B. Ligon III, Robert B.
Ross, and Rajeev Thakur. PVFS: A parallel
file system for Linux clusters. In Proceedings
of the 4th Annual Linux Showcase and Con-
ference, pages 317-327, Atlanta, GA, October
2000. USENIX Association.

[2] R. Ross, D. Nurmi, A. Cheng, and M. Zingale. A
case study in application I/O on Linux clusters.
In Proceedings of SC2001, November 2001.

[3] William Gropp, Ewing Lusk, and Rajeev
Thakur. Using MPI-2: Advanced Features of the
Message-Passing Interface. MIT Press, Cam-
bridge, MA, 1999.

[4] Rajeev Thakur, William Gropp, and Ewing
Lusk. On implementing MPI-IO portably and
with high performance. In Proceedings of the
6th Workshop on I/0 in Parallel and Distributed
Systems, pages 23-32. ACM Press, May 1999.



